
Public Key Certi�cation �

Secure File Transfer

Christoph L� Schuba and Sulabha S� Sheth

Department of Computer Sciences

Purdue University

West Lafayette� IN ����������

fschuba�shethg�cs�purdue�edu

Abstract

This document describes secure �le transfer between user agents� Our approach guarantees
con�dentiality and integrity of transferred �les� originator authentication� and non�repudiation�
We achieve these goals through the usage of DES� MD��RSA� ANSI X���� and a distributed
scheme for the validation of public component certi�cates �similar to X��	��


� Introduction

Our goal is to build a secure �le transfer protocol between user agents that guarantees the following
features�

� con�dentiality of the �le contents�

� integrity of the �le contents�

� originator authentication� and

� non�repudiation�

Integrity� originator authentication� and non�repudiation are achieved by applying a digital
�ngerprint� or message digest to the transferred �le� We are using MD���RSA� for the digital
signature� Con�dentiality is achieved by DES� encryption of the �le with a di�erent private key
for each message that is generated according to ANSI X���	��

The security of the RSA asymmetric public key� cryptosystem depends on the validity of the
public keys� That means that the correct binding between an entity and its public key must be
established undoubtably� The correct binding can be established through the usage of public key
certi�cates� Each entity that possesses a public key
private component pair also has a certi�cate�
a tupel containing the entities identi�er �subject�� the entities public key �public key�� and a
signature over the previous �elds �signature� signed by the issuer with its private key�

�Message Digest Algorithm
�Rivest� Shamir� and Adleman scheme
�Data Encryption Standard
�ANSI session key generation
�We use the terms public key and private component for the keys of asymmetric cryptosystems� the term private

key for symmetric cryptosystems�

�



Issuers� or certi�cation authorities are organized in a hierarchical fashion like in PEM� which is
based on X��
��� The public key of the root of this certi�cation graph must be known to everybody
by some out�of�band mechanism� User agents are the leaves of the certi�cation graph�

A certi�cate is validated by verifying the signature applied by the issuer of the certi�cate� This
use of certi�cates transforms the problem of acquiring the public key associated with a user into
one of acquiring the public key of the issuer of the user�s certi�cate� The recursion terminates when
the issuer is the root� whose public key is well known�

� Algorithms

This section gives de�nitions of the algorithms used in our approach� We present the Message
Digest � algorithm �MD��� the RSA scheme� the Data Encryption Standard �DES�� X���	 session
key generation� and the usage of public key certi�cates like in the ISO authentication framework
X��
��

��� The MD� Algorithm

The algorithm takes as input a message of arbitrary length and produces as output a ����bit
�ngerprint or message digest of the input� It is conjectured that it is computationally infeasible to
produce two messages having the same message digest� or to produce any message having a given
prespeci�ed target message digest�

Suppose the input is a b�bit message M �b � IN�� M � m�m�m����mb��� The algorithm is
de�ned in �ve steps�

�� Append Padding Bits

The message is padded so that length�M� � ��� �mod �����

Padding� �f
g� �i�e� at least � bit and at most ��� bits are appended��

�� Append Length

A ���bit representation of b is appended to the result of the previous step� If b � ���� then
only the low�order ���bits of b are used�

�� Initialize MD Bu�er

A four�word bu�er �A�B�C�D� is used to compute the message digest� These ���bit registers
are initialized with certain values�

�� Process Message in ���Word Blocks

Each ���word block of the input is run through � rounds of application of transformation
functions� The four�word bu�er serves as temporary memory�

�Privacy Enhanced Mail
�ISO authentication framework

�



�� Output

The message digest produced as output is A� B� C� D�

MD� was developed by R� Rivest and is de�ned in �Riv����

��� The RSA Scheme

The RSA is an exponentiation cipher based on a public key system� It is based on a public n which
is the product of two large secret primes n � pq� A d is chosen such that it is relatively prime to
the Euler Phi function of n � � �n�� It is chosen such that it lies in the interval �max�p� q���� n����
The encryption exponent e is calculated by calculating inverse of d and � �n��

The reduced set of residues modulo n is the subset of residues f
� ����� n� �g relatively prime
to n� The Euler Totient Function � �n� is the number of elements in the reduced set of residues
modulo n�

The Euler Totient Function � �n� is determined by �rst creating the reduced set of residues and
then determining the relative primality of each element of this set with n� For a prime number p
� �p� � p� �� Thus� for RSA� if n � pq� then � �n� � � �p� � �q��

� To encrypt M we use the following function� C �M e mod n

� To decrypt C� the encrypted message� we use the following function� M � Cd mod n

In this way� the encryption exponent e and n are made public� One cannot calculate d without
the knowledge of p and q� Therefore the enciphering transformation is made public and the de�
ciphering transformation is kept secret� The security of the system depends on the di�culty and
speed with which n can be factored into its factors p and q� The security of the system also depends
on using carefully selected primes p and q� If n is �

 digits then p and q should be large primes of
approximately �

 digits� Rivest� Shamir and Adleman suggest using �

�digit numbers for p and
q� then n is �

 digits� and factoring would take several billion years at the rate of one step per
microsecond�

In hardware� at its fastest RSA is about �


 times slower than DES� The fastest VLSI hardware
implementation for RSA with a ����bit moduli has a throughput of �� kbps�

In software� DES is about �

 times faster than RSA� These numbers may change slightly as
technology advances but RSA will never approach the speed of symmetric algorithms�

The RSA scheme is originally de�ned in �RSA	�� and nicely described in �Den��� x��	����

��� Prime Number Generation

For many data encryption schemes� a number of keys is required� To make the scheme less suscep�
tible to breaking it is often suggested that huge prime numbers be used� Prime number generation
plays a pivotal role in Data Security � Cryptography and many years and PhD thesis have been
spent on generating prime numbers e�ciently and moreover verifying that the number that is gen�
erated is truly prime� Current methods are quite e�cient and with the computation time being

�



decreased while the interested reader peruses this document� there are now algorithms that can
generate �

 digit prime numbers in a matter of seconds at the same time verifying that the number
is prime with a high degree of con�dence�

We followed the algorithm in �Den��� x��	��� for the generation of prime numbers� It is a simple
formula �

Pi�� � �k � Pi � �

That means the previously generated prime Pi is multiplied with an even random number �k�
The random number �k should have less digits than Pi� Since the number thus obtained is an even
number� � is further added to make it odd� There is a pretty good chance that this number is a
prime number� Then we carry out the sieve operation� that is we keep adding �Pi to the number
determined above for an array of about � � ln��
current number of digits� numbers and then cancel
out all the numbers which have a small prime factor� The small prime factor can be any prime
number which is less than say �


� The numbers which are not cancelled out are then checked
for primality using the ballistic primality test which was handed out in class and is a very fast and
e�cient algorithm� We have implemented the algorithm and it works �ne giving excellent results�
As soon as a prime number is found� the search is terminated and we repeat the process with the
newly obtained prime until the required number of digits is obtained�

Experience shows that close to the termination of the algorithm it becomes increasingly di�cult
to determine a prime number of the desired number of digits�

��� The Data Encryption Standard

Unlike in RSA which is an asymmetric cryptosystem� in the symmetric DES system the same
key is used for both enciphering and deciphering� It enciphers ���bit blocks with a ���bit key� Refer
to �gures � and �� The algorithm may be summarized in � steps �

�� Initial Permutation

The input block is �rst transposed under an initial permutation� The IP table is a public
table� It is read from left�to�right� top�to�bottom�

�� The �� iterations

After the initial permutation �� iterations �or rounds� are performed on the permuted block�
This involves a combination of substitutions and transpositions� The block is identi�ed as
two blocks of �� bits each� Li and Ri� Then Li � Ri�� and Ri � Li�� � f�Ri��� Ki�� Where
Ki is a series of ���bit keys generated from K�

�� The function f and the S�boxes

Initially� the �rst block say� Ri�� is expanded to ���bits using the bit�selection table� The
bit�selection table is used in essentially the same way as the initial permutation table except
that a few bits are chosen more that once as we have to expand from ���bits to ���bits�
After expanding to �� bits� the block is broken up into eight ��bit blocks after calculating
the exclusive OR of the expanded blocks and the key� Next� each ��bit block is fed into the

�



L0

L1 = R0

L2 = R1

L15 = R14

f

R16 = L15 xor f(R15,K16) L16 = R15

R15 = L14 xor f(R14,K15)

R2 = L1 xor f(R1,K2)

R1 = l0 xor f(R0,K1)

Initial Permutation

R0

Inverse of the Initial Permuation

Input

Output

Key

K1

K2

K16

48

32 32

5664

f

f

Figure �� DES Enciphering Algorithm

selection fuctions which return ��bits� These bits are concatenated together to give �� bits�

�



6
48

Ri-1

S2S2 S3 S4 S5 S6 S7 S8

48 Ki

Selection

Permutation

f(Ri-1,Ki)

4

32

32

32

48

Figure �� Calculation of f�Ri��� ki�

A point to be noted is that in the last ���th� round� an interchange does not take place�

That is �

R�� � L�� � f�R��� K��� and it remains on the left side� L�� � R�� and it remains on the
right side�

This is so because decryption takes place with the same algorithm with the keys being fed in�
in the reverse order� see ��

�� The key calculation

Each of the �� iterations mentioned above uses a di�erent ���bit key derived from the initial
���bit key K� K is input as a ���bit block� with � parity bits in positions ������������ The
parity bits are discarded using the permutation� It is then split into two halves of ���bits
each� say Ci and Di� The blocks Ci and Di are each successively shifted left to derive each
key Ki�

�� Deciphering

Deciphering is performed using the same algorithm except that K�� is used in the �rst itera�
tion� K�� is the second and so on� This is so because the �nal permutation is the inverse of the
initial permutation� Note that initial and �nal permutation do not enhance the security of the
DES crytosystem� however to adhere to the standard the permutations cannot be omitted�

The DES is originally de�ned in �NBS		� and nicely described in �Den��� x�������

�



��� X���� Key Generation

The ANSI standard X���	 speci�es a method of key generation� which is suitable for generating
session keys within a system �see �Sch��� x	�������

Let Ek�X� be DES encryption of X with key k� The key k is a key reserved for secret key
generation� V� is a secret ���bit seed� T is a timestamp� To generate the random key Ri� we
calculate�

Ri � Ek�Ek�Ti��Vi�

To generate Vi��� we calculate�

Vi�� � Ek�Ek�Ti��Ri�

To turn the Ri into a DES key� we simply adjust every eighth bit for parity and interpret it as
such�

��� Public Key Certi	cates

The process of validating public keys received from remote entities is described in section ����

Our approach to validate public keys is based on �CCI��� and nicely described in �Sch��� x�	����
�Ken��a�� and �Ken��b��

� Application

This section motivates the usage of the algorithms described in the previous section and shows
how they are used for signing� verifying signatures� encrypting and decrypting data� and validating
public key certi�cates�

��� Signing

Two of the problems with �le transfer are that the contents of the �le might be altered or forged
without detection� The usage of digital signatures ensures that such transgressions are detected�
Figure � depicts the process�

To start with� the �le being signed is run through a one�way hash function� This function� also
called a cryptographic hash function or message digest� in our case MD�� takes a �le of arbitrary
size and produces a has value� With a good one�way hash function� it is computationally infeasible
to modify the message so that it produces the same hash value�

Once the hash value has been determined� the user agent creates the signature by encrypting
the hash value with its RSA private component and sends the signature with the message� If a
one�way hash was not used� the signature would have to be as large as the message�

	



File MD5

Private Key

hash value RSA encryption Signature

Figure �� Signing a �le

Public Key

RSA decryption hash value

hash valueMD5

Signature

File

Figure �� Verifying a Signature

��� Verifying

In order for the signature to be useful� it must be possible to verify it� The veri�cation process is
depicted in Figure �� To verify the signature on a �le that a user agent receives� the same one�way
hash function that was used when the �le was signed is applied to the �le to recompute the hash
value� The user agent then takes the RSA public key of the originator and decrypts the signature
he had received� If the calculated hash value and the decrypted signature match� then the �le must
have come from the originator� and it cannot have been altered�

��� Encrypting

It is very useful to know that a �le was genuine� but there is still at least one more problem with
�le transfer� Anyone having access to any of the computers� networks� or communication lines on
which a �le is stored or travels can potentially read the message� Using encryption makes sending
private �les that are supposed to stay private possible� Encrypting a �le is depicted in Figure ��

We use the DES algorithm to encrypt the messages mainly for performance reasons� DES is
a much faster algorithm than RSA� and additionally available in hardware� therefore useful to
sign large �les� while the RSA scheme with its asymmetric nature is useful for signing �les and
communicating keys� Since DES is a symmetric encryption algorithm� the problem of the key
distribution between the two peer user agents �sender
receiver� must be solved�

The user agent encrypts the �le using a random DES key called the data encryption key �DEK��
That key is encrypted with the recipient�s RSA public key� Since only the receiving user agent has
access to its RSA private component� only the recipient can decrypt the encrypted DEK and decrypt
the message�

�



DES encryption Encrypted fileFile

DEK

Public Key

Encrypted DEKRSA encryption

Figure �� Encrypting a File

��� Decrypting

Upon receiving a con�dential �le� the receiving user agent �nds a copy of the DEK that was
encrypted with its public key� The decryption process is depicted in Figure ��

Private Key

Encrypted file

RSA decryption DEK

DES decryption File

Encrypted DEK

Figure �� Decrypting a File

The user agent decrypts the �le by using its RSA private component to decrypt the DEK and
using DES to decrypt the �le using the DEK �

��� Certi	cate Validating

It is important for the user agents to have others� RSA public keys� It is vital that user agents can
trust that they really have the public keys of the user agents that they think they do� To ensure
that the certi�cates are placed in a veri�able certi�cation hierarchy�

Certi�cates are signed to ensure that they are not altered and to identify who signed them� User
agents� certi�cates are signed by their certi�cation authority� certi�cation authorities certi�cates
by their certi�cation authority� and so on up to the root of the hierarchically organized certi�cation
graph�

A user agent that wants to validate another user agent�s certi�cate� does so by verifying it
with the issuer�s RSA public key� However the issuer�s RSA public key must now be validated�
This process is clearly recursive� The �nal veri�cation of the certi�cate issued by the root of the
certi�cation graph is done by the well known RSA public key of the root that must have been
received through some out of band mechanism�

�



Certification Graph

1. Certificate

2. Certificate

3. Certificate

sheth@india.asia.root

india.asia.root

asia.root

root

schuba@germany.europe.root

Figure 	� Validating Certi�cates

Figure 	 depicts an example of this recursive validation process� User agent
schuba�germany�europe�root wants to obtain validation for user agent sheth�india�asia�root�s pub�
lic key� User agent schuba checks � certi�cates ����� until he can validate the third one with the
well known public key of the certi�cation authority root�

�� Certi�cate for sheth�india�asia�root

�subject � sheth�india�asia�root� public key � Ksheth	india�asia�root
pub �

signature � Signature
Kindia �asia �root

priv
�

must be validated with Kindia�asia�root
pub �

�� Certi�cate for india�asia�root

�subject � india�asia�root� public key � Kindia�asia�root
pub �

signature � Signature
Kasia �root

priv
�

must be validated with Kasia�root
pub �

�� Certi�cate for asia�root

�subject � asia�root� public key � Kasia�root
pub �

signature � SignatureKroot
priv

�

must be validated with Kroot

pub � which is well known by out�of�band mechanisms �perhaps an
advertisement in the New York Times��

�




� Implementation

��� Terminology

We use the OSI
 terminology for primitives and types of service elements�

Figure � depicts uncon�rmed service� which does not require an explicit end�to�end con�rmation
to be issued upon the completion of the procedure� Figure � depicts con�rmed service� which does
require such a con�rmation�

time

service providerservice user

request

indication

Figure �� Uncon�rmed Service

The request primitive is issued by the service user to invoke or initiate the use of the service�
The noti�cation of the service provider is performed by the indication primitive� Similarly the reply
of the provider is the response primitive that the service user receives in form of the con�rmation
primitive�

��� Network Protocol

In this section we de�ne the protocol data units� that are transmitted over the network� We will
use six di�erent packet types of which four are used for a con�rmed service� and two are used for
an uncon�rmed service� Table � shows an overview over the packets with their names� service type�
and associated parameter list� Our data dictionary is de�ned in section ����

��� Functionality Certi	cation Authority

This section describes the functionality of the certi�cation authority daemon�

�� Setup�

� system logging

�Open Systems Interconnection
�PDU� also known as packet or datagram

��



time

service providerservice user

request

indication

response

confirmation

Figure �� Con�rmed Service

Table �� Protocol packets

packet name service type code parameters

register�request con�rmed �x�� �subject� rsa n� rsa public� ip� port�
register�response �x�� �signature�
lookup�request �x�� �subject�
lookup�response �x�� �ip� port�
certificate�request �x�� ��
certificate�response �x�� �subject� rsa n� rsa public� signature�
transfer�request �x�� �filename� filesize� from� sig digest� sig dek�
transfer�response �x�� ��

deregister�request uncon�rmed �x�� �subject�
data�request �x�� �data�

� list data structure for user agent management

�� Initialization�

� Determine and Save� subject� issuer� rsa n� rsa public� rsa private in
��subject��key� or

� Restore� from previously saved ��subject��key

�� Registration�

��



� if subject � root�
No registration necessary�
Create� NewYorkTimes and save rsa n� rsa public�

� if subject �� root�
Register with issuer�
register�request
register�confirmation�

�� Service on well known port�

� Registration service to ca�s and ua�s�
register�indication
register�response�

� Deregistration service to ca�s and ua�s�
deregister�indication

� Lookup service to ca�s�
lookup�indication
lookup�response�

� Certi�cate service to ca�s�
certificate�indication
certificate�response�

��� Functionality User Agents

This section describes the functionality of the user agent client�

�� Setup�

� system logging

�� Initialization�

� Determine and Save� subject� issuer� rsa n� rsa public� rsa private in
��subject��key� or

� Restore� from previously saved ��subject��key

�� Registration�

� Register with issuer�
register�request
register�confirmation�

�� Select input from standard input and well known port�

� Standard input�

� send ��lename� �subject�

Send a �le to the given subject�
lookup�request
lookup�confirmation
fcertificate�request
certificate�confirmationg�
transfer�request
transfer�confirmation
fdata�requestg�

��



� list

Show the list of �les in the inbox�

� whoami

Display information about the subject�

� help

Display this list of commands and their short explanation�

� cls

Clear the screen�

� quit

Gracefully terminate the session�

� Advertised port�

� Certi�cate validation service�
certificate�indication
certificate�response

� Accept �le transfer request� handle �le transfer�
transfer�indication
transfer�response
fdata�indicationg�
fcertificate�request
certificate�confirmationg�
Decryption of �les and validation of message digests� The connection will be closed
when the �le transfer is complete �i�e� when size bytes were transmitted��

��� Data Dictionary

����� Data Types

� ip� unsigned long � Internet protocol address

� quad� char �DOTTEDQUADSIZE	 �� ���

� subject� char �SUBJECTSIZE	 �� ���

� issuer� char �SUBJECTSIZE	

� filename� char �FILENAMESIZE	 �� ����

� des key� char�DES KEY SIZE	 �� ��

� digest� char �MD�DIGESTSIZE	 �� ���

� signature� char �MPCDIM	 �� �

�

� rsa n� char�MPCDIM	

� rsa public� char�MPCDIM	

� rsa private� char�MPCDIM	

��



Table �� File Naming Conventions

�lename description

��subject��key where �subject� stands for a complete subject name� con�
tains subject� issuer� and all key components� �note this is a
hidden �le��

NewYorkTimes contains the well known public key of the subject root
etc�hosts contains the subject �host portion� to IP address mapping
log��subject� where �subject� stands for a complete subject name� con�

tains the log �le� Log entries are appended�
inbox��ua��dir where �ua� stands for a complete ua name� contains the

number of �les and a directory entry for each of these
�les with �lename� size� originator and encrypted DES key�
The according �les have been received and still have to be
converted�

inbox��ua����lename� where �ua� stands for a complete ua name and where
��lename� is a �lename to distinguish several �les that were
received before converted�

����	 File Names

Table � contains an overview over the �lename conventions used in this implementation�

����
 File Formats

The �le formats are described in Extended Backus�Naur form� The terminals ip� subject� issuer�
des key� signature� rsa n� rsa public� rsa private were de�ned in section ������ int� long�
string �� char
� are the according C types� Comment lines are valid in etc�hosts� They start
with a hash ��� as the �rst character of the line and end with NL �new�line� or EOF �end�of��le��

� ��subject��key

file ��� subject�n issuer�n rsa�n�n rsa�public�n rsa�private�n�

� NewYorkTimes

file ��� rsa�n�n rsa�public�n�

� etc�hosts

lines ��� lines line � epsilon�

line ��� quad hostname�n�

hostname ��� char��

��



� log��subject�

lines ��� lines line � epsilon�

line ��� date time anything�that�makes�sense�n�

date ��� dd�mmm�yy�

time ��� hh�mm�ss�

� inbox��ua��dir

files ��� files file � epsilon�

file ��� filename filesize from dek�encr�

filename ��� string�

filesize ��� long�n�

from ��� subject�n�

dek�encr ��� signature�n�

� inbox��ua����lename�

contents ��� string�

� Example

��� Con	guration

xinu1

xinu4 xinu3xinu2

xinu7

xinu5

xinu9 xinu8

xinu6xinu7

xinu10

root

usa

europe asiaamerica

germany russia india

sheth@india.asia.root

schuba@germany.europe.root

ssw@usa.america.root

spaf@usa.america.root

xinu7

Figure �
� Con�guration of test environment

��



�

� local etc�hosts database�

�

� format
 data 
 �IPaddr hostname�

� comments
 ���
�

�

� root node

�

������������ root

�

� first level nodes

�

������������ america�root

������������ asia�root

������������ europe�root

�

� second level nodes

�

������������ russia�asia�root

������������ usa�america�root

������������ india�asia�root

������������ germany�europe�root

� EOF

Figure �
 depicts the con�guration of our test environment� The previous �le etc�hosts de�nes
the hostname to IP address mapping for our certi�cation authority graph�

Each certi�cation authority node in the graph is labeled with a simple name without dots�
The full certi�cation authority name of any node in the graph is the sequence of labels on the
path from that node to the root� Names are always read from the node towards the root �up the
graph� and with dots separating the names in the path� User agent names are built the same way
with the leading user name and an � as separator� A typical user agent name would therefore be
schuba�germany�europe�root�

Our test environment executes each certi�cation authority on a di�erent machine� Each of them
listens on a well known service port� Note that this poses the restriction that at any given time
a maximum number of one authority daemon can run on one particular host� This feature also
holds for all well known UNIX services� Because we did not want to restrict the user agents to
such a limited number� user agents bind to system supplied ports and register with their particular
authority according to their name� In our implementation this registration is done in band for the
ease of demonstration� However� in reality the registration procedure must happen out�of�band�
Each certi�cation authority maintains a list of currently registered users�

In our example we execute users spaf and ssw on the same physical host� The following two
paragraphs contain the real runtime logs of a session� The test run includes�

� start up of all certi�cation authorities�

�	



� registration of all user agents�

� sending a �le from user agent schuba to user agent sheth�

� retrieving of the �le by user agent ssw�

� taking down a node and restarting it to demonstrate our fault tolerant approach�

The time stamps provide help in tracing what exactly happened� The last paragraph in this
section contains the con�guration �les and the at runtime generated �les for key storage�

��� Logs of Certi	cation Authorities

The test data for our project that is not online is appended to this document�

��� Logs of User Agents

See previous section�

��� Con	guration Files and Runtime Generated Files

See previous section�

� Tests

This section describes our testing e�orts during the project development and after the implemen�
tation of each module�

��� Design Principles

We would like to stress that we consider our bottom up technique of development as part of
the testing process� We split the project up into modules like data structure handling� name
binding� DES� MD�� RSA� MPLIB� system logging� communication subsystem� and others� The
code for each module resides in a di�erent directory with it�s own make�le� It was therefore easy
to incorporate main programs that test only certain modules� These main programs were modi�ed
while the project grew to test each newly implemented feature and in some cases the interaction
between several modules� like in the case of the list and element handling�

The testing of the collection of modules in interaction with each other is very runtime dependent�
It is di�cult to document it accordingly� We therefore consider as one example for the testing the
printouts of the previous section � that demonstrate many notions of the functionality of our system�

One of the primary design criteria for distributed systems is the amount of fault tolerance� We
build into our system the ability to restart nodes that are crashed with previously calculated keys to
make the rest of the system unaware of the temporary loss of functionality� It is clear that services
that rely on a node that is down cannot be provided� but once the node is up again� except for a
few exceptions� further authentication validations can be done without any noticeable di�erence�

��



��� Prime Generation

We implemented a prime number generator and also a prime testing routine based on the proaba�
bilistic approach but needed a means of verifying that �rst� our routines functioned as desired and
second� the primes that we generated were most likely prime� Therefore� we thought of utilizing an
existing math package� We used the maple number theory package� developed at the University of
Waterloo�

We wrote the following shell script to generate a number of primes with our routine in sequential
order and then store these numbers in a format that could be interpreted by maple� Maple then
used its isprime�� funtion to verify each of the previously generated primes as probably prime�

���usr�local�bin�tcsh

�

� Generate a bunch of prime numbers and write in maple program like format

�

echo � aaahhh

set i � �

while ��i �� ����

echo p
� �� aaahhh

mpprimetest �� aaahhh

echo �
� �� aaahhh

echo �isprime �p��� �� aaahhh

set i � �expr �i � ��

end

The results that we obtained were superb� All the prime numbers that were generated by our
program were accepted as being most likely prime� Maple uses �Knu��� x������ Algorithm P� for
primality testing�

Therefore we established a high level of trust in the functionality of our prime generation as
well as our prime testing routine�

��� DES
 MD�
 MPLIB

The modules DES� MD� and MPLIB were largely obtained from di�erent sources on the Internet�
DES was found online on the Department of Computer Science at Purdue University� The MD�
implementation was taken out of the de�ning RFC and ran after a bug that was present in the
standard was �xed� The module MPLIB was obtained from Dr� S� Wagsta�� Jr� and modi�ed by us
to have a more modular structure� We separated header �le and the rest of the library of functions
and linked all object codes into a UNIX library that can now easily be bound to any program
requiring multi precision integer arithmetic routines� We augmented this library by functions for
e�cient prime generation and primality testing� as further described in the previous paragraph ����
calculating inverses in modular arithmetic� and further useful functions�

��



References

�CCI��� CCITT� Recommendation X���� The Directory Authentication Framework� CCITT�
�����

�Den��� Dorothy E� Denning� Cryptography and Data Security� Addison�Wesley Publishing Com�
pany� Inc�� �����

�Ken��a� Stephen T� Kent� Internet Privacy Enhanced Mail� Communications of the ACM�
������������ May �����

�Ken��b� Stephen T� Kent� RFC���		 Privacy Enhancement for Internet Electronic Mail
 Part

II
 Certi�cate�Based Key Management� Network Working Group� February �����

�Knu��� Donald E� Knuth� The Art of Computer Programming� � volume �� Addison�Wesley
Publishing Company� Inc�� second edition� �����

�NBS		� NBS� Data Encryption Standard� National Bureau of Standards� Washington D�C�� Jan�
��		� FIPS PUB ���

�Riv��� Ronald L� Rivest� RFC���	� The MD� Message�Digest Algorithm� Network Working
Group� April �����

�RSA	�� R� Rivest� A� Shamir� and L� Adleman� A Method for Obtaining Digital Signatures and
Public Key Cryptosystems� Communications of the ACM� ��������
��� February ��	��

�Sch��� Bruce Schneier� Applied Cryptography� John Wiley � Sons� Inc�� �����

�Tru��� Trusted Information Systems� Incorporated� TIS�PEM User
s Guide� ��
�� edition� June
�����

�



