Public Key Certification &
Secure File Transfer

Christoph L. Schuba and Sulabha S. Sheth

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907-1398
{schuba,sheth}Q@cs.purdue.edu

Abstract

This document describes secure file transfer between user agents. Our approach guarantees
confidentiality and integrity of transferred files, originator authentication, and non-repudiation.
We achieve these goals through the usage of DES, MD5-RSA; ANSI X9.17 and a distributed

scheme for the validation of public component certificates (similar to X.509.)

1 Introduction

Our goal is to build a secure file transfer protocol between user agents that guarantees the following
features:

e confidentiality of the file contents,
e integrity of the file contents,
e originator authentication, and

e non-repudiation.

Integrity, originator authentication, and non-repudiation are achieved by applying a digital
fingerprint, or message digest to the transferred file. We are using MD5!-RSA? for the digital
signature. Confidentiality is achieved by DES® encryption of the file with a different private key
for each message that is generated according to ANSI X9.174,

The security of the RSA asymmetric public key® cryptosystem depends on the validity of the
public keys. That means that the correct binding between an entity and its public key must be
established undoubtably. The correct binding can be established through the usage of public key
certificates. Each entity that possesses a public key/private component pair also has a certificate,
a tupel containing the entities identifier (subject), the entities public key (public key), and a
signature over the previous fields (signature) signed by the issuer with its private key.

! Message Digest Algorithm

2Rivest, Shamir, and Adleman scheme

*Data Encryption Standard

*ANSI session key generation

®We use the terms public key and private component for the keys of asymmetric cryptosystems, the term private
key for symmetric cryptosystems.

Issuers, or certification authorities are organized in a hierarchical fashion like in PEM® which is
based on X.5097. The public key of the root of this certification graph must be known to everybody
by some out-of-band mechanism. User agents are the leaves of the certification graph.

A certificate is validated by verifying the signature applied by the issuer of the certificate. This
use of certificates transforms the problem of acquiring the public key associated with a user into
one of acquiring the public key of the issuer of the user’s certificate. The recursion terminates when
the issuer is the root, whose public key is well known.

2 Algorithms

This section gives definitions of the algorithms used in our approach. We present the Message
Digest 5 algorithm (MD5), the RSA scheme, the Data Encryption Standard (DES), X9.17 session
key generation, and the usage of public key certificates like in the ISO authentication framework
X.509.

2.1 The MD5 Algorithm

The algorithm takes as input a message of arbitrary length and produces as output a 128-bit
fingerprint or message digest of the input. It is conjectured that it is computationally infeasible to
produce two messages having the same message digest, or to produce any message having a given
prespecified target message digest.

Suppose the input is a b-bit message M (b € IN): M = mgmimg...mp_1. The algorithm is
defined in five steps:

1. Append Padding Bits
The message is padded so that length(M) = 448 (mod 512).
Padding: 1{0}* (i.e. at least 1 bit and at most 512 bits are appended.)

2. Append Length

A 64-bit representation of b is appended to the result of the previous step. If b > 254, then
only the low-order 64-bits of b are used.

3. Initialize MD Buffer

A four-word buffer (A,B,C,D) is used to compute the message digest. These 32-bit registers
are initialized with certain values.

4. Process Message in 16-Word Blocks

Each 16-word block of the input is run through 4 rounds of application of transformation
functions. The four-word buffer serves as temporary memory.

%Privacy Enhanced Mail
"ISO authentication framework

5. Output
The message digest produced as output is A, B, C, D.

MD5 was developed by R. Rivest and is defined in [Riv92].

2.2 The RSA Scheme

The RSA is an exponentiation cipher based on a public key system. It is based on a public » which
is the product of two large secret primes n = pg. A d is chosen such that it is relatively prime to
the Euler Phi function of n, ¢ (n). It is chosen such that it lies in the interval [max(p,¢)+1,n—1].
The encryption exponent e is calculated by calculating inverse of d and ¢ (n).

The reduced set of residues modulo n is the subset of residues {0,....,n — 1} relatively prime
to n. The Fuler Totient Function ¢ (n) is the number of elements in the reduced set of residues
modulo n.

The Euler Totient Function ¢ (n) is determined by first creating the reduced set of residues and
then determining the relative primality of each element of this set with n. For a prime number p

¢ (p) = p—1. Thus, for RSA,if n = pg, then ¢ (n) = ¢ (p) ¢ (¢).

o To encrypt M we use the following function: €' = M® mod n

o To decrypt C, the encrypted message, we use the following function: M = C'? mod n

In this way, the encryption exponent e and n are made public. One cannot calculate d without
the knowledge of p and ¢. Therefore the enciphering transformation is made public and the de-
ciphering transformation is kept secret. The security of the system depends on the difficulty and
speed with which n can be factored into its factors p and ¢. The security of the system also depends
on using carefully selected primes p and ¢. If n is 200 digits then p and ¢ should be large primes of
approximately 100 digits. Rivest, Shamir and Adleman suggest using 100-digit numbers for p and
q; then n is 200 digits, and factoring would take several billion years at the rate of one step per
microsecond.

In hardware, at its fastest RSA is about 1000 times slower than DES. The fastest VLSI hardware
implementation for RSA with a 512-bit moduli has a throughput of 64 kbps.

In software, DES is about 100 times faster than RSA. These numbers may change slightly as
technology advances but RSA will never approach the speed of symmetric algorithms.

The RSA scheme is originally defined in [RSA78] and nicely described in [Den82, §2.7.2].

2.3 Prime Number Generation

For many data encryption schemes, a number of keys is required. To make the scheme less suscep-
tible to breaking it is often suggested that huge prime numbers be used. Prime number generation
plays a pivotal role in Data Security & Cryptography and many years and PhD thesis have been
spent on generating prime numbers efficiently and moreover verifying that the number that is gen-
erated is truly prime. Current methods are quite efficient and with the computation time being

decreased while the interested reader peruses this document, there are now algorithms that can
generate 100 digit prime numbers in a matter of seconds at the same time verifying that the number
is prime with a high degree of confidence.

We followed the algorithm in [Den82, §2.7.2] for the generation of prime numbers. It is a simple
formula :

PZ'_HIQIC-PZ'—I—l

That means the previously generated prime P; is multiplied with an even random number 2k.
The random number 2k should have less digits than F;. Since the number thus obtained is an even
number, 1 is further added to make it odd. There is a pretty good chance that this number is a
prime number. Then we carry out the sieve operation, that is we keep adding 2P; to the number
determined above for an array of about 5 - In(10cwrrent-rumber—ofdigits) numbers and then cancel
out all the numbers which have a small prime factor. The small prime factor can be any prime
number which is less than say 1000. The numbers which are not cancelled out are then checked
for primality using the ballistic primality test which was handed out in class and is a very fast and
efficient algorithm. We have implemented the algorithm and it works fine giving excellent results.
As soon as a prime number is found, the search is terminated and we repeat the process with the
newly obtained prime until the required number of digits is obtained.

Experience shows that close to the termination of the algorithm it becomes increasingly difficult
to determine a prime number of the desired number of digits.

2.4 The Data Encryption Standard

Unlike in RSA which is an asymmetric cryptosystem, in the symmetric DES system the same
key is used for both enciphering and deciphering. It enciphers 64-bit blocks with a 56-bit key. Refer
to figures 1 and 2. The algorithm may be summarized in 5 steps :

1. Initial Permutation

The input block is first transposed under an initial permutation. The IP table is a public
table. It is read from left-to-right, top-to-bottom.

2. The 16 iterations

After the initial permutation 16 iterations (or rounds) are performed on the permuted block.
This involves a combination of substitutions and transpositions. The block is identified as
two blocks of 32 bits each, L; and R;. Then L; = R,y and R; = Li—1 & f(Ri;—1, K;). Where
K; is a series of 48-bit keys generated from K.

3. The function f and the S-bozes

Initially, the first block say, R;_1 is expanded to 48-bits using the bit-selection table. The
bit-selection table is used in essentially the same way as the initial permutation table except
that a few bits are chosen more that once as we have to expand from 32-bits to 48-bits.
After expanding to 48 bits, the block is broken up into eight 6-bit blocks after calculating
the exclusive OR of the expanded blocks and the key. Next, each 6-bit block is fed into the

I nput Key

— ® 56_|-

[I nitial Per mutation]
[
]]
LO RO
- 32 32K / K1
- @ 48

L1=RO R1=10xor f(RO,K1)
K2
e (T
NV
L2=R1 R2=L1xor f(R1,K2)
| | |
___ R I
e - |
v v ‘
L15=R14 R15 =L 14 xor f(R14,K15)
K16
e (%
N -
R16 = L 15 xor f(R15,K16) L16=R15
l l
]
[I nver se of the I nitial Permuation]
Output

Figure 1: DES Enciphering Algorithm
selection fuctions which return 4-bits. These bits are concatenated together to give 32 bits.

5

432

Selection

;\48 (48 Ki
e

Per mutation
- 32
f(Ri-1,Ki)

Figure 2: Calculation of f(R;_1,k;)

A point to be noted is that in the last (16th) round, an interchange does not take place.
That is :

Ri6 = L1s & f(Ris, K16) and it remains on the left side. L1 = Ry5 and it remains on the
right side.

This is so because decryption takes place with the same algorithm with the keys being fed in,
in the reverse order, see 5.

4. The key calculation

Each of the 16 iterations mentioned above uses a different 48-bit key derived from the initial
56-bit key K. K is input as a 64-bit block, with 8 parity bits in positions 8,16,...,64. The
parity bits are discarded using the permutation. It is then split into two halves of 28-bits
each, say C; and D;. The blocks C; and D; are each successively shifted left to derive each
key K;.

5. Deciphering

Deciphering is performed using the same algorithm except that K¢ is used in the first itera-
tion, K15 is the second and so on. This is so because the final permutation is the inverse of the
initial permutation. Note that initial and final permutation do not enhance the security of the
DES crytosystem, however to adhere to the standard the permutations cannot be omitted.

The DES is originally defined in [NBS77] and nicely described in [Den82, §2.6.2].

2.5 X9.17 Key Generation

The ANSI standard X9.17 specifies a method of key generation, which is suitable for generating
session keys within a system (see [Sch94, §7.2.1].)

Let Fr(X) be DES encryption of X with key k. The key k is a key reserved for secret key
generation. Vg is a secret 64-bit seed. T is a timestamp. To generate the random key R;, we
calculate:

R; = Ex(EL(T;)DV5)
To generate V41, we calculate:
Vigr = Eu(ER(T)DR;)

To turn the R; into a DES key, we simply adjust every eighth bit for parity and interpret it as
such.

2.6 Public Key Certificates

The process of validating public keys received from remote entities is described in section 3.5.

Our approach to validate public keys is based on [CCI88] and nicely described in [Sch94, §17.6],
[Ken93a], and [Ken93b].

3 Application

This section motivates the usage of the algorithms described in the previous section and shows
how they are used for signing, verifying signatures, encrypting and decrypting data, and validating
public key certificates.

3.1 Signing

Two of the problems with file transfer are that the contents of the file might be altered or forged
without detection. The usage of digital signatures ensures that such transgressions are detected.
Figure 3 depicts the process.

To start with, the file being signed is run through a one-way hash function. This function, also
called a cryptographic hash function or message digest, in our case MD5, takes a file of arbitrary
size and produces a has value. With a good one-way hash function, it is computationally infeasible
to modify the message so that it produces the same hash value.

Once the hash value has been determined, the user agent creates the signature by encrypting
the hash value with its RSA private component and sends the signature with the message. If a
one-way hash was not used, the signature would have to be as large as the message.

Private Key

File 9[MD5]% hash value 9[RSA encryption]% Signature

Figure 3: Signing a file

Public Key

Signature 9[RSA decryption]% hash value

Fle [= MD5 }—= hashvalue

Figure 4: Verifying a Signature

3.2 Verifying

In order for the signature to be useful, it must be possible to verify it. The verification process is
depicted in Figure 4. To verify the signature on a file that a user agent receives, the same one-way
hash function that was used when the file was signed is applied to the file to recompute the hash
value. The user agent then takes the RSA public key of the originator and decrypts the signature
he had received. If the calculated hash value and the decrypted signature match, then the file must
have come from the originator, and it cannot have been altered.

3.3 Encrypting

It is very useful to know that a file was genuine, but there is still at least one more problem with
file transfer. Anyone having access to any of the computers, networks, or communication lines on
which a file is stored or travels can potentially read the message. Using encryption makes sending
private files that are supposed to stay private possible. Encrypting a file is depicted in Figure 5.

We use the DES algorithm to encrypt the messages mainly for performance reasons. DES is
a much faster algorithm than RSA, and additionally available in hardware, therefore useful to
sign large files, while the RSA scheme with its asymmetric nature is useful for signing files and
communicating keys. Since DES is a symmetric encryption algorithm, the problem of the key
distribution between the two peer user agents (sender/receiver) must be solved.

The user agent encrypts the file using a random DES key called the data encryption key (DEK).
That key is encrypted with the recipient’s RSA public key. Since only the receiving user agent has
access toits RSA private component, only the recipient can decrypt the encrypted DEK and decrypt
the message.

File 9[DES encryption]% Encrypted file
DEK %[RSA encryption]% Encrypted DEK

Public Key

Figure 5: Encrypting a File

3.4 Decrypting

Upon receiving a confidential file, the receiving user agent finds a copy of the DEK that was
encrypted with its public key. The decryption process is depicted in Figure 6.

Private Key

Encrypted DEK 9[RSA decryption]% DEK
Encrypted fileﬁ[DES decryption]% File

Figure 6: Decrypting a File

The user agent decrypts the file by using its RSA private component to decrypt the DEK and
using DES to decrypt the file using the DEK .

3.5 Certificate Validating

It is important for the user agents to have others” RSA public keys. It is vital that user agents can
trust that they really have the public keys of the user agents that they think they do. To ensure
that the certificates are placed in a verifiable certification hierarchy.

Certificates are signed to ensure that they are not altered and to identify who signed them. User
agents’ certificates are signed by their certification authority, certification authorities certificates
by their certification authority, and so on up to the root of the hierarchically organized certification
graph.

A user agent that wants to validate another user agent’s certificate, does so by verifying it
with the issuer’s RSA public key. However the issuer’s RSA public key must now be validated.
This process is clearly recursive. The final verification of the certificate issued by the root of the
certification graph is done by the well known RSA public key of the root that must have been
received through some out of band mechanism.

Certification Graph

‘ -~ __ 3. Certificate
2. Certificate ™ ™
R >
-
1 Certificate . Schuba@germany.europexroot
‘ é’//// ,,,,, PR
_sheth@nadia.asiaroot
Figure 7: Validating Certificates
Figure 7 depicts an example of this recursive validation process. User agent

schuba@germany.europe.root wants to obtain validation for user agent sheth@india.asia.root’s pub-
lic key. User agent schuba checks 3 certificates (1-3) until he can validate the third one with the
well known public key of the certification authority root.

1. Certificate for sheth@india.asia.root

sheth@india.asta.root

(subject = sheth@india.asia.root, public key = Ko ,

signature = SlgnatureKmdm,asm,mot)

priv

must be validated with K;Z‘ém'“”'””.

2. Certificate for india.asia.root

(subject = india.asia.root, public key =
signature = Signatureyasia.root)

priv

india.asia.root
Kpub ’

must be validated with K;Z@“”Ot.

3. Certificate for asia.root

(subject = asia.root, public key = K;Z@dﬂ“oot,
signature = Signaturey oot)

priv
must be validated with K;ifbt, which is well known by out-of-band mechanisms (perhaps an
advertisement in the New York Times.)

10

4 Implementation

4.1 Terminology

We use the OSI® terminology for primitives and types of service elements.

Figure 8 depicts unconfirmed service, which does not require an explicit end-to-end confirmation
to be issued upon the completion of the procedure. Figure 9 depicts confirmed service, which does
require such a confirmation.

service user service provider
request
indication
time

Figure 8: Unconfirmed Service

The request primitive is issued by the service user to invoke or initiate the use of the service.
The notification of the service provider is performed by the indication primitive. Similarly the reply
of the provider is the response primitive that the service user receives in form of the confirmation
primitive.

4.2 Network Protocol

In this section we define the protocol data units? that are transmitted over the network. We will
use six different packet types of which four are used for a confirmed service, and two are used for
an unconfirmed service. Table 1 shows an overview over the packets with their names, service type,
and associated parameter list. Our data dictionary is defined in section 4.5.

4.3 Functionality Certification Authority

This section describes the functionality of the certification authority daemon.

1. Setup:

¢ system logging

80pen Systems Interconnection
°PDU, also known as packet or datagram

11

service user service provider
request
indication

time |

|

l

! response

confirmation

- e—— e o — — b - — — = — = — — — — — —

Figure 9: Confirmed Service

Table 1: Protocol packets

packet name service type | code | parameters

register.request confirmed 0x11 | (subject, rsan, rsa_public, ip, port)
register.response 0x21 | (signature)

lookup.request 0x13 | (subject)

lookup.response 0x23 | (ip, port)

certificate.request 0x14 | ()

certificate.response 0x24 | (subject, rsan, rsa_public, signature)
transfer.request 0x15 | (filename, filesize, from, sig.digest, sig dek)
transfer.response 0x25 | ()

deregister.request unconfirmed | 0x12 | (subject)

data.request 0x16 | (data)

o list data structure for user agent management
2. Initialization:

e Determine and Save: subject, issuer, rsan, rsa public, rsa private in
.<subject> .key, or

¢ Restore: from previously saved .<subject>.key

3. Registration:

12

¢ if subject = root:
No registration necessary.
Create: NewYorkTimes and save rsan, rsa public.

o if subject # root:
Register with issuer:
register.request/register.confirmation.

4. Service on well known port:
o Registration service to ca’s and ua’s:

register.indication/register.response.

o Deregistration service to ca’s and ua’s:
deregister.indication

e Lookup service to ca’s:
lookup.indication/lookup.response.

o Certificate service to ca’s:
certificate.indication/certificate.response.

4.4 Functionality User Agents

This section describes the functionality of the user agent client.

1. Setup:
¢ system logging
2. Initialization:

e Determine and Save: subject, issuer, rsan, rsa public, rsa private in
.<subject> .key, or

¢ Restore: from previously saved .<subject>.key
3. Registration:

¢ Register with issuer:
register.request/register.confirmation.

4. Select input from standard input and well known port:

e Standard input:

— send <filename> <subject>
Send a file to the given subject:
lookup.request/lookup.confirmation
{certificate.request/certificate.confirmation}+
transfer.request/transfer.confirmation
{data.request}+

13

— list
Show the list of files in the inbox.

— whoami
Display information about the subject.

— help
Display this list of commands and their short explanation.

— cls
Clear the screen.

— quit
Gracefully terminate the session.

e Advertised port:

— Certificate validation service:
certificate.indication/certificate.response

— Accept file transfer request, handle file transfer:
transfer.indication/transfer.response
{data.indication}+
{certificate.request/certificate.confirmation}+
Decryption of files and validation of message digests. The connection will be closed
when the file transfer is complete (i.e. when size bytes were transmitted.)

4.5 Data Dictionary
4.5.1 Data Types

e ip: unsigned long - Internet protocol address
e quad: char [DOTTEDQUADSIZE] (= 16)

e subject: char [SUBJECTSIZE] (= 63)

e issuer: char [SUBJECTSIZE]

e filename: char [FILENAMESIZE] (= 128)

¢ des_key: char[DESKEY_SIZE] (= 8)

e digest: char [MDSDIGESTSIZE] (= 16)

e signature: char [MPCDIM] (= 200)

e rsan: char [MPCDIM]

e rsa public: char[MPCDIM]

e rsa private: char [MPCDIM]

14

Table 2: File Naming Conventions

filename description

.<subject> key where <subject> stands for a complete subject name, con-
tains subject, issuer, and all key components. (note this is a

hidden file!)

NewYorkTimes contains the well known public key of the subject root

etc/hosts contains the subject (host portion) to IP address mapping

log/<subject> where <subject> stands for a complete subject name, con-
tains the log file. Log entries are appended.

inbox/<ua>.dir where <ua> stands for a complete ua name, contains the

number of files and a directory entry for each of these
files with filename, size, originator and encrypted DES key.
The according files have been received and still have to be
converted.

inbox/<ua>.<filename> | where <ua> stands for a complete ua name and where
<filename> is a filename to distinguish several files that were
received before converted.

4.5.2 File Names

Table 2 contains an overview over the filename conventions used in this implementation.

4.5.3 File Formats

The file formats are described in Extended Backus-Naur form. The terminals ip, subject, issuer,
des key, signature, rsan, rsa_public, rsa_private were defined in section 4.5.1; int, long,
string (= char*) are the according C types. Comment lines are valid in etc/hosts. They start
with a hash (#) as the first character of the line and end with NL (new-line) or EOF (end-of-file).

e .<subject> .key

file ::= subject\n issuer\n rsa_n\n rsa_public\n rsa_private\n.

o NewYorkTimes

file ::= rsa_n\n rsa_public\n.

e etc/hosts

lines = lines line | epsilon.
line = quad hostname\n.
hostname ::= char*.

15

5.1

line
date

e log/<subject>

lines ::= lines line | epsilon.
= date time anything that_makes_sense\n.
= dd.mmm.yy.

time ::= hh:mm:ss.

inbox/<ua>.dir

files ::= files file | epsilon.

file ::= filename filesize from dek_encr.
filename ::= string.

filesize ::= long\n.

from ::= subject\n.

dek_encr ::= signature\n.

inbox/<ua>.<filename>

contents ::= string.

Example

Configuration

xinu2 europe | xinu4 xinu3
xinul0
xinu7 xinu9[germany] [russia] [india] xinug
xinu7 xinué
spaf @usa.america.root . schuba@germany.europe.root : s
| ssw@usa.america.root : xinuz ' sheth@ndia.asia.root

Figure 10: Configuration of test environment

16

it
local etc/hosts database.

#

format: data : "IPaddr hostname$
comments: “#.*$

#

root node

#

128.10.3.101 root

#

first level nodes

#

128.10.3.102 america.root
128.10.3.103 asia.root
128.10.3.104 europe.root

#

second level nodes

#

128.10.3.105 russia.asia.root
128.10.3.107 usa.america.root
128.10.3.108 india.asia.root
128.10.3.109 germany.europe.root
EOF

Figure 10 depicts the configuration of our test environment. The previous file etc/hosts defines
the hostname to IP address mapping for our certification authority graph.

Each certification authority node in the graph is labeled with a simple name without dots.
The full certification authority name of any node in the graph is the sequence of labels on the
path from that node to the root. Names are always read from the node towards the root (up the
graph) and with dots separating the names in the path. User agent names are built the same way
with the leading user name and an @ as separator. A typical user agent name would therefore be
schuba@germany.europe.root.

Our test environment executes each certification authority on a different machine. Each of them
listens on a well known service port. Note that this poses the restriction that at any given time
a maximum number of one authority daemon can run on one particular host. This feature also
holds for all well known UNIX services. Because we did not want to restrict the user agents to
such a limited number, user agents bind to system supplied ports and register with their particular
authority according to their name. In our implementation this registration is done in band for the
ease of demonstration. However, in reality the registration procedure must happen out-of-band.
Each certification authority maintains a list of currently registered users

In our example we execute users spaf and ssw on the same physical host. The following two
paragraphs contain the real runtime logs of a session. The test run includes:

e start up of all certification authorities.

17

o registration of all user agents.
¢ sending a file from user agent schuba to user agent sheth.
o retrieving of the file by user agent ssw.

o taking down a node and restarting it to demonstrate our fault tolerant approach.

The time stamps provide help in tracing what exactly happened. The last paragraph in this
section contains the configuration files and the at runtime generated files for key storage.

5.2 Logs of Certification Authorities

The test data for our project that is not online is appended to this document.

5.3 Logs of User Agents

See previous section.

5.4 Configuration Files and Runtime Generated Files

See previous section.

6 Tests

This section describes our testing efforts during the project development and after the implemen-
tation of each module.

6.1 Design Principles

We would like to stress that we consider our bottom up technique of development as part of
the testing process. We split the project up into modules like data structure handling, name
binding, DES, MD5, RSA, MPLIB, system logging, communication subsystem, and others. The
code for each module resides in a different directory with it’s own makefile. It was therefore easy
to incorporate main programs that test only certain modules. These main programs were modified
while the project grew to test each newly implemented feature and in some cases the interaction
between several modules, like in the case of the list and element handling.

The testing of the collection of modules in interaction with each other is very runtime dependent.
It is difficult to document it accordingly. We therefore consider as one example for the testing the
printouts of the previous section 5 that demonstrate many notions of the functionality of our system.

One of the primary design criteria for distributed systems is the amount of fault tolerance. We
build into our system the ability to restart nodes that are crashed with previously calculated keys to
make the rest of the system unaware of the temporary loss of functionality. It is clear that services
that rely on a node that is down cannot be provided, but once the node is up again, except for a
few exceptions, further authentication validations can be done without any noticeable difference.

18

6.2 Prime Generation

We implemented a prime number generator and also a prime testing routine based on the proaba-
bilistic approach but needed a means of verifying that first, our routines functioned as desired and
second, the primes that we generated were most likely prime. Therefore, we thought of utilizing an
existing math package. We used the maple number theory package, developed at the University of
Waterloo.

We wrote the following shell script to generate a number of primes with our routine in sequential
order and then store these numbers in a format that could be interpreted by maple. Maple then
used its isprime() funtion to verify each of the previously generated primes as probably prime.

#!/usr/local/bin/tcsh

#

Generate a bunch of prime numbers and write in maple program like format
#

echo > aaahhh
set 1 =1
while ($i != 200)
echo p:= >> aaahhh
mpprimetest >> aaahhh
echo ’:’ >> aaahhh
echo ’isprime (p);’ >> aaahhh

set i = ‘expr $i + 1°
end

The results that we obtained were superb! All the prime numbers that were generated by our
program were accepted as being most likely prime. Maple uses [Knu81, §4.5.4, Algorithm P] for
primality testing.

Therefore we established a high level of trust in the functionality of our prime generation as
well as our prime testing routine.

6.3 DES, MD5, MPLIB

The modules DES, MD5 and MPLIB were largely obtained from different sources on the Internet.
DES was found online on the Department of Computer Science at Purdue University. The MD5
implementation was taken out of the defining RFC and ran after a bug that was present in the
standard was fixed. The module MPLIB was obtained from Dr. S. Wagstaff, Jr. and modified by us
to have a more modular structure. We separated header file and the rest of the library of functions
and linked all object codes into a UNIX library that can now easily be bound to any program
requiring multi precision integer arithmetic routines. We augmented this library by functions for
efficient prime generation and primality testing, as further described in the previous paragraph 6.2,
calculating inverses in modular arithmetic, and further useful functions.

19

References

[CCISS]

[Den82]

[Ken93a]

[Ken93b]

[Knu81]

[NBS77]

[Riv92]

[RSATS]

[Sch94]

[Tru93]

CCITT. Recommendation X-509 The Directory Authentication Framework. CCITT,
1988.

Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley Publishing Com-
pany, Inc., 1982.

Stephen T. Kent. Internet Privacy Enhanced Mail. Communications of the ACM,
36(8):48-59, May 1993.

Stephen T. Kent. RF(C-1422 Privacy Fnhancement for Internet Flectronic Mail: Part
1I: Certificate-Based Key Management. Network Working Group, February 1993.

Donald E. Knuth. The Art of Computer Programming. , volume 2. Addison-Wesley
Publishing Company, Inc., second edition, 1981.

NBS. Data Encryption Standard. National Bureau of Standards, Washington D.C., Jan.
1977. FIPS PUB 46.

Ronald L. Rivest. RFC-1321 The MD5 Message-Digest Algorithm. Network Working
Group, April 1992.

R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and
Public Key Cryptosystems. Communications of the ACM, 21(2):120-6, February 1978.

Bruce Schneier. Applied Cryptography. John Wiley & Sons, Inc., 1994.

Trusted Information Systems, Incorporated. TIS/PEM User’s Guide, 6.0.1 edition, June
1993.

20

