
The Cops Security Checker System�

Purdue University Technical Report CSD�TR����

Daniel Farmer

Computer Emergency Response Team

Software Engineering Institute

Carnegie Mellon University

Pittsburgh� PA ����������

df	sei
cmu
edu

Eugene H� Spa�ord

Software Engineering Research Center

Department of Computer Sciences

Purdue University

West Lafayette� Indiana ����������

spaf	cs
purdue
edu

July ��� ����

Abstract

In the past several years� there have been a large number of pub�
lished works that have graphically described a wide variety of security
problems particular to Unix� Without fail� the same problems have
been discussed over and over again� describing the problems with SUID
�set user ID� programs� improper �le permissions� and bad passwords
�to name a few�� There are two common characteristics to each of
these problems� �rst� they are usually simple to correct� if found� sec�
ond� they are fairly easy to detect�

Since almost all systems have fairly equivalent problems� it seems
appropriate to create a tool to detect potential security problems as
an aid to system administrators� This paper describes one such tool�
Cops� �Computerized Oracle and Password System� is a freely�available�

� This paper originally appeared in the proceedings of the Summer Usenix Conference�

����� Anaheim CA�

�



recon�gurable set of programs and shell scripts that enable system ad�
ministrators to check for possible security holes in their systems�

This paper brie�y describes the system� Included are the under�
lying design goals� the functions provided by the tool� possible ex�
tensions� and some experiences gained from its use� We also include
information on how to obtain a copy of the initial Cops release�

� Introduction

The task of making a computer system secure is a di�cult one� To make a
system secure means to protect the information from disclosure� protecting
it from alteration� preventing others from denying access to the machine� its
services� and its data� preventing degradation of services that are present�
protecting against unauthorized changes� and protecting against unautho�
rized access�

To achieve all these security goals in an actual� dynamic environment
such as that presented by most Unix � systems can be a major challenge�
Practical concerns for �exibility and adaptability render most formal secu�
rity methods inapplicable� and the variability of system con�guration and
system administrator training make �cookbook	 methods too limited� Many
necessary security administration tasks can be enhanced through the use of
software and hardware mechanisms put in place to regulate and monitor ac�
cess by users and user programs� Those same mechanisms and procedures�
however� constrain the ability of users to share information and to cooper�
ate on projects� As such� most computer systems have a range of options
available to help secure the system� Choosing some options allows enhanced
sharing of information and resources� thus leading to a better collaborative
environment� where other settings restrict that access and can help make
the system more secure�

One of the tasks of a system and security administrator is to choose the
settings for a given system so that security is at an appropriate level
a level
that does not unduly discourage what sharing is necessary for tasks to be
accomplished� but that also gives a reasonable assurance of safety� This often
leads to problems when a system has a very wide range of possible settings�
and when system administrators lack su�cient training and experience to
know what appropriate settings are to be applied�

Ideally� there should be some kind of assistance for system administrators

�
Unix is a registered trademark of AT�T Technologies�

�



that guides them in the application of security measures appropriate for
their environment� Such a system needs to be con�gurable so it provides
the appropriate level of assistance based on the perceived need for security
in that environment� That system should be comprehensive enough so that
an untrained or inexperienced administrator is able to derive a high degree
of con�dence that all appropriate features and weaknesses are identi�ed and
addressed�

Unfortunately� such a tool may also present a danger to that same system
administrator� For instance� there could be a danger if the tool were to fall
into the hands of a potential attacker� The tool could be used to analyze the
target system or to provide clues for methods of attack� A second potential
danger is that the tool can be modi�ed by an unfriendly agent so that the
information it reports and the actions that it takes serve not to enhance
the security of the system� but to weaken it� A third possibility is that the
tool is not comprehensive enough� or that changes in system operation are
such that the tool does not expose the security �aws made present by those
changes� the security administrator� by relying on the tool� fails to be aware
of the new dangers to his or her system�

A good example of all three dangers might be the development and
use of a tool that examines passwords to see if they can be easily guessed
by an attacker� Such a tool might consist of a fast implementation of the
password encryption algorithm used on a particular machine� Provided with
this tool would be a dictionary of words that would be compared against
user passwords� Passwords that match a word in the dictionary would be
�agged as weak passwords�

Such a tool would enable a system administrator to notify users with
weak passwords that they should choose a password that is more di�cult
for an attacker to guess� However� such a tool is a danger to the very same
system it is designed to protect should it fall into the hands of an attacker�
the tool could be used to very rapidly search through the dictionary in an
attempt to �nd a password that could be compromised�

A second potential danger is that an attacker with su�cient privilege
might alter the encryption algorithm or the internal workings of the program
such that it would appear to run correctly� but would fail to match certain
passwords or certain accounts� This would allow a determined attacker to
plant an account with a known simple password that would not be detected
by the program� Alternatively� an attacker might modify such a program to
send its output to not only the administrator� but to the attacker as well�

The third problem is that the system administrator may grow compla�






cent by running this password tool if it continually reports that there are
no weak passwords found� The administrator may not make any e�ort to
enhance the quality or size of the dictionary� or to provide other tracking or
audit mechanisms to observe individuals who may be attempting to guess
passwords or break into accounts�

For all of these reasons� such a tool might be considered to lessen the
overall security of the system rather than to enhance it� That should not
prevent us from developing security tools� however� Instead� the challenge is
to build tools that enhance security without posing too great a threat when
employed by an enemy�

� Design and Structure

��� Design

Although there is no reasonable way that all security problems can be solved
on any arbitrary system� administrators and systems programmers can be
assisted by a software security tool� Cops is an attempt to address as many
potential security problems as possible in an e�cient� portable� and above
all� in a reliable and safe way� The main goal of Cops is one of prevention�
it tries to anticipate and eliminate security problems by detecting problems
and denying enemies an opportunity to compromise security in the �rst
place�

The potential security hazards that Cops checks for were selected from
readings of a variety of security papers and books �see the references section
at the end of the paper�� from interviews with experienced system adminis�
trators� and from reports of actual system breakins�

We applied the following important guiding principles to the design and
development of Cops�

� Cops should be con�gurable so that new tools could be added or the
existing tools altered to meet the security needs of the installation
on which it is run� Since Unix is so dynamic� it must be possible to
incorporate both new tools and methods in Cops as the need for them
becomes apparent�

� Cops should contain no tool that attempts to �x any security problems
that are discovered� Because Cops makes no modi�cations to the
system� it is not required that it be run with any particular privilege�
and many of the tools can be run with privilege less than or equal

�



to that of a regular user� As a result� this lessens the temptation for
an intruder to modify the code in an attempt to make surreptitious
changes to the system�

� While Cops should notify the administrator that there may be a weak�
ness� it does not describe why this is a problem or how to exploit it�
Such descriptions should be found in alternative sources that are not
embedded in the program� Thus� a determined attacker might run
the program� might be able to read the output� but be unaware of a
method to exploit anything that Cops reports it has found�

� Cops should not include any tools whose use by determined attackers�
either standalone or as part of the Cops system� would give them a
signi�cant advantage at �nding a way to break into the system beyond
what they might already have in their possession� Thus� a password
checking tool� as was previously described� is included� but the algo�
rithm utilized is simply what is already present in the system library
of the target system�

� Cops should consist of tools and methods that are simple to read�
understand� and to utilize� By creating the tools in such a manner�
any system administrator can read and understand the system� Not
only does this make it easier to modify the system for particular site
needs� but it allows reexamination of the code at any time to ensure
the absence of any Trojan horse or logic bomb�

� The system should not require a security clearance� export license�
execution of a software license� or other restriction on use� For maxi�
mum e�ectiveness� the system should be widely circulated and freely
available� At the same time� users making site�speci�c enhancements
or including proprietary code for local software should not be forced
to disclose their changes� Thus� Cops is built from new code without
licensing restrictions or onerous �copyleft�	 and bears no restriction
on distribution or use beyond preventing it from being sold as a com�
mercial product�

� Cops should be be written to be portable to as wide a variety of Unix
systems as possible� with little or no modi�cation�

In order to maximize portability� �exibility� and readability� the pro�
grams that make up Cops are written as simple Bourne shell scripts using

�



common commands �awk� sed� etc��� and when necessary� small� heavily�
commented C programs�

��� Structure

Cops is structured as a dozen sub�programs invoked by a shell script� That
top�level script collects any output from the subprograms and either mails
the information to the local administrator or else logs it to a �le� A separate
program that checks for SUID �les is usually run independently because of
the amount of time required for it to search through the �lesystems� All of
the tools except the SUID checker are not meant to be run as user root or
any other privileged account�

Please note that the descriptions of the tools provided here do not contain
any detailed explanation of why the tools check what they do� In most cases�
the reason is obvious to anyone familiar with Unix� In those cases where it is
not obvious� the bibliographic material at the end of this paper may provide
adequate explanations� We apologize if the reasons are not explained to
your satisfaction� but we do not wish to provide detailed information for
potential system crackers who might have our system�

These are the individual the programs that comprise Cops�

dir�check� �le�chk These two programs check a list of directories and �les
�respectively� listed in a con�guration �le to ensure that they are not
world�writable� Typically� the �les checked would include �etc�passwd�
��pro�le� �etc�rc� and other key �les� directories might include �� �bin�
�usr�adm� �etc and other critical directories�

pass�chk This program searches for and detects poor password choices�
This includes passwords identical to the login or user name� some
common words� etc� This uses the standard library crypt routine�
although the system administrator can link in a faster version� if one
is available locally�

group�chk� passwd�chkThese two tools check the password �le ��etc�passwd
and yppasswd output� if applicable� and group �le � �etc�group and yp�

group output� if applicable� for a variety of problems including blank
lines� null passwords� non�standard �eld entries� non�root accounts
with uid��� and other common problems�

cron�chk� rc�chk These programs ensure that none of the �les or programs
that are run by cron or that are referenced in the �etc�rc� �les are

�



world�writable� This protects against an attacker who might try to
modify any programs or data �les that are run with root privileges at
the time of system startup� These routines extract �le names from the
scripts and apply a check similar to that in �le�chk�

dev�chk checks �dev�kmem� �dev�mem� and �le systems listed in �etc�fstab
for world read�writability� This prevents would�be attackers from get�
ting around �le permissions and reading�writing directly from the de�
vice or system memory�

home�chk� user�chk These programs check each user�s home directory
and initialization �les ��login� �cshrc� �pro�le� etc� for world writability�

root�chk This checks root startup �les �e�g�� ��login� ��pro�le� for incorrect
umask settings and search paths containing the current directory� This
also examines �etc�hosts�equiv for too much accessibility� and a few
miscellaneous other tests that do not �t anywhere else�

suid�chk This program searches for changes in SUID �le status on a sys�
tem� It needs to be run as user root for best results� This is because
it needs to �nd all SUID �les on the machine� including those that are
in directories that are not generally accessible� It uses its previous run
as a reference for detecting new� deleted� or changed SUID �les�

kuang The U�Kuang expert system� originally written by Robert W� Bald�
win of MIT� This program checks to see if a given user �by default�
root� is compromisable� given that certain rules are true�

It is important to note once again that Cops does not attempt to correct
any potential security hazards that it �nds� but rather reports them to the
administrator� The rationale for this is that is that even though two sites
may have the same underlying hardware and version of Unix� it does not
mean that the administrators of those sites will have the same security
concerns� What is standard policy at one site may be an unthinkable risk at
another� depending upon the nature of the work being done� the information
stored on the computer� and the users of the system� It also means that the
Cops system does not need to be run as a privileged user� and it is less
likely to be booby�trapped by a vandal�

�



� Usage

Installing and running Cops on a system usually takes less than an hour�
depending on the administrator�s experience� the speed of the machine� and
what options are used� After the initial installation� Cops usually takes a
few minutes to run� This time is heavily dependent on processor speed� how
many password checking options are used� and how many accounts are on
the system�

The best way to use Cops is to run it on a regular basis� via at or
cron� Even though it may not �nd any problems immediately� the types of
problems and holes it can detect could occur at any later time�

Though Cops is publically accessible� it is a good idea to prevent others
from accessing the programs in the toolkit� as well as seeing any security
reports generated when it has been run� Even if you do not think of them
as important� someone else might use the information against your system�
Because Cops is con�gurable� an intruder could easily change the paths and
�les that it checks� thus making any security checks misleading or worth�
less� You must also assume intruders will have access to the same toolkit�
and hence access to the same information on your security problems� Any
security decisions you make based on output from Cops should re�ect this�
When dealing with the security of your system� caution is never wasted�

� Experience and Evaluation

This security system is not glamorous
it cannot draw any pictures� it con�
sists of a handful of simple shell scripts� it does not produce lengthy� detailed
reports� and it is likely to be of little interest to experienced security admin�
istrators who have already created their own security toolkits� On the other
hand� it has proven to be quite e�ective at pointing out potential security
problems on a wide variety of systems� and should prove to be fairly valuable
to the majority of system administrators who don�t have the time to create
their own system� Some administrators of major sites have informed us that
they are incorporating their old security checks into Cops to form a uni�ed
security system�

Cops has been in formal release for only a few months �as of January
������ We have received some feedback from sites using the system� includ�
ing academic� government and commercial sites� All of the comments about
the ease of use� the readability of the code� and the range of things checked

�



by the system have been quite positive� We have also� unfortunately� had
a few reports that Cops may have been used to aid in vandalizing systems
by exposing ways to break in� In one case� the vandal used Cops to �nd
a user directory with protection modes ���� In the other case� the vandal
used Cops to �nd a writable system directory� Note� however� that in both
of these cases� the same vulnerability could have easily been found without
Cops�

It is interesting to note that in the sites we have tested� and from what
limited feedback we received from people who have utilized it� over half
the systems had security problems that could compromise the root user�
Whether that can be generalized to a larger population of systems is un�
known� part of our ongoing research is to determine how vulnerable a typical
site may be� Even machines that have come straight from the vendor are
not immune from procedural security problems� Critical �les and directories
are often left world�writable� and con�guration �les are shipped so that any
other machine hooked up to the same network can compromise the system�
It underscores this sad state of a�airs when one vendor�s operational manual
harshly criticizes the practice of placing the current directory in the search
path� and then in the next sentence states �Unfortunately� this safe path
isn�t the default�	 �

We plan on collecting further reports from users about their experiences
with Cops� We would encourage readers of this paper who may use it to
inform us of the performance of the system� the nature of problems indicated
by the system� and of any suggestions for enhancing the system�

� Future Work

From the beginning of this project� there have been two key ideas that have
helped focus our attention and re�ne our design� First� there is simply no
reasonable way for us to write a security package that will perform every task
that we felt was necessary to create a truly satisfactory security package�
Second� if we waited� no one else was going to write something like Cops
for us� Thus� we forged ahead with the design and construction of a solid�
basic security package that could be easily expanded� We have tried to
stress certain important principles in the design of the system� so that the

�We will not embarrass that one vendor by citing the source of the quote� At least

they noted the fact that such a path is a hazard� many vendors do not even provide that

much warning�

�



expansion and evolution of Cops will continue to provide a workable tool�
Cops was written to be rewritten� Every part of the package is designed

to be replaced easily� every program has room for improvement� The frame�
work has room for many more checks� It seems remarkable that a system
as simple as this �nds so many �aws in a typical installation� Nonetheless�
we have thought of a number of possible extensions and additions to the
system� these are described in the following sections�

��� Detecting known bugs

This is a very di�cult area to consider� because there are an alarming num�
ber of sites �especially commercial ones� without the source code that is
necessary to �x bugs� Providing checks for known bugs might make Cops
more dangerous� thus violating our explicit design goals� At the same time�
checking for known bugs could be very useful to administrators at sites with
access to source code�

If we keep in mind thatCops is intended as a system for regular use by an
administrator� we conclude that checking for known bugs is not appropriate�
because such checks are ordinarily done once and not repeated� Thus� a
separate system for checking known bugs would be appropriate
a a system
that might be distributed in a more controlled manner� We are currently
considering di�erent methods of distributing such a system�

��� Checksums and Signatures

Checksums and cryptographically�generated signatures could be an excel�
lent method of ensuring that important �les and programs have not been
compromised� Cops could be enhanced to regenerate these checksums and
compare them against existing references� To build this into Cops will
require some method of protecting both the checksum generator and the
stored checksums� however� It also poses the problem that system adminis�
trators might rely on this mechanism too much and fail to do other forms of
checking� especially in situations where new software is added to the system�

��� Detecting changes in important �les

There are some �les that should change infrequently or not at all� The �les
involved vary from site to site� Cops could easily be modi�ed to check
these �les and notify the system administrator of changes in contents or

��



modi�cation times� Again� this presents problems with the protection of
the reference standard� and with possible complacency�

��� NFS and Yellow Pages

Many new vulnerabilities exist in networked environments because of these
services� Their recent development and deployment mean that there are
likely to be more vulnerabilities and bugs present than would be found in
more mature code� As weaknesses are reported� corresponding checks should
be added to the Cops code�

��� Include UUCP security checks

Because UUCP is very widely used� it is important to increase the number
and sophistication of the checks performed on all the di�erent varieties of
UUCP� This includes checking the �les that limit what programs can be
remotely executed� the USERFILE and L�sys �les� and the protections on
directories�

��� Con�guration �les

There are many problems that result from improper con�guration �les�
These occur not only from having the �les open to modi�cation� but because
of unexpected or misunderstood interactions of options� Having rule�based
programs� similar to kuang� which analyze these con�guration �les would be
an ideal way to extend Cops�

��� Checking OS	speci�c problems

There are a wide variety of problems that apply only to certain �avors of
Unix� This includes not only the placement of key �les� but also syntactical
and logical di�erences in the way those systems operate� Examples include
such things as shadow password �les� di�erent system logging procedures�
shared memory� and network connectivity� Ideally� the same set of tools
would be used on every system� and a con�guration �le or script would
resolve any di�erences�

��



� Conclusions

Over the last �� months since the Internet worm� perhaps the most strongly
voiced opinion from the Internet community has been �security through
secrecy does not work�	 Nonetheless� there is still an appalling lack of com�
munication about security� System breakers and troublemakers� on the other
hand� appear to encounter little di�culty �nding the time� energy� and re�
sources necessary to break into systems and cause trouble� It is not that
they are particularly bright� indeed� examining the log of a typical breakin
shows that they follow the same methods that are publicized in the latest
computer security mailing lists� in widely publicized works on security� and
on various clandestine bulletin boards� The di�erence between them and
the system administrators on the Internet seems to be communication� It
is clear that the underground community has a well�established pipeline of
information that is relatively easy for them to tap� Many system adminis�
trators� however� have no access to an equivalent source of information� and
are thrust into their positions with little or no security experience� Cops

should be particularily helpful in these cases�
None of programs in Cops cover all of the possible areas where a system

can be harmed or compromised� It can� however� aid administrators in
locating some of the potential trouble spots� Cops is not meant to be a
panacea for all Unix security woes� but an administrator who examines
the system and its documentation might reduce the danger to his or her
system� That is all that can ever be expected of any security tool in a real�
operational environment�

Future work on Cops will be done at the CERT� and work on related
tools and approaches will be done at Purdue� People are encouraged to
get a copy of Cops and provide us with feedback and enhancements� We
expect that as time goes on� and as the awareness of security grows� Cops
and systems like it will be evolved through community e�ort� Increased
communication and awareness of the problems should not be limited to just
the crackers�

� Acknowledgments

Thanks go to Robert Baldwin for allowing us to include his marvelous U�
Kuang system� to Donald Knuth for inspirational work on how not only
to write but to create a software system� to Je� Smith� Dan Trinkle� and

��



Steve Romig for making available their systems and expertise during the
development of Cops� and �nally� our beta testers� without whom Cops

might never have been�

Getting Cops

Cops has been run successfully on a large number of computers� including
Unix boxes from Sun� DEC� HP� IBM� AT�T� Sequent� Gould� NeXT� and
MIPS�

A copy ofCops was posted to the comp�sources�unix newsgroup and thus
is available in the UUCP archives for that group� as well as via anonymous
ftp from a variety of sites �uunet�uu�net and j�cc�purdue�edu� for example��
We regretfully cannot mail copies of Cops to sites� or make tapes� as we do
not have the time or resources to handle such requests�

Biographies

Dan Farmer is a member of the CERT �Computer Emergency Response
Team� at the Software Engineering institute at Carnegie Mellon University�
He is currently designing a tool that will detect known bugs on a variety
of Unix systems� as well as continuing program development and design on
the Unix system�

Gene Spa�ord is an assistant professor at Purdue University in the De�
partment of Computer Sciences� He is actively involved with software en�
gineering research� including testing and debugging technology� He is also
actively involved in issues of computer security� computer crime� and pro�
fessional ethics� Spaf is coauthor of a recent book on computer viruses� is
in the process of coauthoring a book on Unix security to be published by
O�Reilly and Associates� and is well�known for his analysis of the Morris
Internet Worm� Besides being a part�time netgod� Gene is involved with
ACM� IEEE�CS� the Computer Security Institute� the Research Center on
Computers and Society� and �of course� Usenix�

References

�� Aho� Alfred V�� Brian W� Kernighan� and Peter J� Weinberger� The
AWK Programming Language� Addison�Wesley Publishing Company�
�����

�




�� Authors� Various�Unix Security Mailing List�Security Digest� Decem�
ber �����present�


� Baldwin� Robert W�� Rule Based Analysis of Computer Security� Mas�
sachusetts Institute of Technology� June �����

�� Grampp� F� T� and R� H� Morris� �Unix Operating System Security�	
AT�T Bell Laboratories Technical Journal� October �����

�� Kaplilow� Sharon A� and Mikhail Cherepov� �Quest
A Security Au�
diting Tool�	 AT�T Bell Laboratories Technical Journal� AT�T Bell
Laboratories Technical Journal� May�June �����

�� Smith� Kirk� �Tales of the Damned�	 Unix Review� February �����

�� Spa�ord� Eugene� Kathleen Heaphy and David Ferbrache� Computer
Viruses� Dealing with Electronic Vandalism and Programmed Threats�
ADPASO� �����

�� Spence� Bruce� �spy� A Unix File System Security Monitor�	 Proceed�
ings of the Large Installation Systems Administration III Workshop�
Usenix Association� September� �����

�� Thompson� Ken� �Re�ections on Trusting Trust�	 �� ���� Communi�
cations of the ACM� August �����

��� Wood� Patrick and Stephen Kochran� Unix System Security� Hayden
Books� �����

��� Wood� Patrick� �A Loss of Innocence�	 Unix Review� February �����

��


